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Abstract. Two attractive charges of equal mass and charge magnitude are held a distanced 
apart for their entire past history, and at t = 0 are given a very small initial velocity away 
from one another. They slow down, stop, and fall into one another until they collide. We 
have used retarded fields and neglected radiation reaction in our Taylor series numerical 
solution, using constants to correspond to the 1 = 0, n = 1 orbit for positronium. The results 
are extremely close to the equivalent non-relativistic problem, thereby supporting the 
Schrodinger equation as a very good approximation to the true motion. We examine the 
Darwin approximation (supposedly correct to second order in p ) ,  and find it much closer to 
the non-relativistic solution than to the true relativistic one. The diameters of the various 
orbits and an upper limit to their corresponding periods are also suggested by the 
calculations. 

1. The true relativistic solutiont 

1.1. Outline 

Two attractive charges of equal mass and charge magnitude are held an initial distanced 
apart for their entire past history, and at t = 0 are given a very small initial velocity 
uo/c  = P o  away from each other. They slow down, stop, then approach one another 
until they collide. Since the problem is relativistic, it takes a finite amount of time for 
each charge to ‘see’ a change in the motion of the other; hence for an initial time interval 
each moves in the electrostatic field of the other as seen in its original position. The 
problem is soluble analytically for this interval, and the results can be used to calculate 
the values of the various functions for the rest of the trajectory. We will treat the 
problem using the Lienard-Wiechert retarded fields, and will neglect any radiation- 
reaction force. The constants used in our calculations correspond to the 1 = 0, n = 1 
orbit for positronium. 

1.2. The analytic part of the trajectory 

The energy equation governing a charge moving with an initial velocity in the electro- 
static field of a fixed second charge is 

moc2+ moc2yo-q2/d = moc2 + moc2y -q2/r (1) 
t When we use the term ‘true’ relativistic solution, we are merely contrasting it with the non-relativistic form, 
which is invalid when the charges are very close. It is certainly correct to say that our solution is not the true 
relativistic one in that we do not include radiation reaction; on  the other hand, if we allow ourselves freedom 
to assume a built-in quantum condition that prevents radiation in order to stabilize the orbit of the 
positronium, then there is a certain validity in calling our solution the ‘true’ relativistic one. 
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where yo, y = 1 / ( 1  -p;)’”, 1 / ( 1  -p2)1/2 and d is the initial separation. Since p = 
dr/c dt, the equation can be separated and integrated directly. If we define D = 
q2/moc2d and use the restriction that 0 s  (yo- D)’< 1 (which will be justified below) 
we arrive at 

Dr r 2  
d 

d(yo-f) ( D 2 +  2-(yo - D )  +;is[(yo- 0)’- I]’/’ - ( y ;  - ct = 
(yo-D) - 1  

Thus r is an implicit function of the time. Equation ( 1 )  would then give us p, and 
successive differentiations of ( 1 )  would yield the higher-order derivatives in terms of p,  
r, or t. 

To find out when this solution becomes invalid, and when we must begin using 
retarded fields, we set ct = r in equation (2), since the change in the static field from one 
particle travels the distance r at speed c in reaching the second charge at time t. 

To determine the relationship between yo and D we equate the true energy at t = 0 
(not that given by equation ( 1 ) )  to the energies of the various Bohr orbits of two equal 
bound masses: 

2moc2yo- 2moc2-q2/d = -q4mo/4h2n2 

where n refers to the orbit. The equation can be written 

yo= 1 +D/2-q4/8c2h2n2. (3) 

We find from our calculations that the larger our choice of yo (and thus of Po),  the 
greater the percentage of the trajectory that is covered by the analytic solution. This is 
not desirable, since the analytic solution corresponds to a somewhat artificial physical 
situation. In reality, as the charges oscillate back and forth through one another they 
are governed completely by retarded fields (with the possible exception of the singular- 
ity at r = 0). So we want the analytic part to be minimal. This occurs when the end of the 
analytic region is as close as possible to where the charges stop before returning (in our 
calculations for positronium the retarded-field region comprises 99.999% of the 
distance travelled, and 99.5% of the elapsed time). The value of D from equation (3) 
that brings this about results in a value of yo-D that is just less than 1. This justifies 
using the restriction 0 s (yo - 0)’ < 1 mentioned above. 

1.3. The retarded-field trajectory 

The functions from the analytic portion can be used as retarded quantities in the 
Lienard-Wiechert force equation to find present-time functions in the first part of the 
retarded-field trajectory. These new values can then be used as retarded ones to 
calculate the next set of present-time functions, and so on. We have found it useful to 
define 

Y =[(I + P ) l ( 1  - p W 2 ,  z = R/c = ( r  + r r ) / c  = t - t r  (4) 
where the prime signifies retarded time, and r is measured from the point midway 
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between the charges. When this is done, the force equation 

m , c & ( ~ - p ~ ) ~ / ~ = q ~ ( ~  + ~ ' ) / R ~ ( I  - p ' )  ( 5 )  

(where p is now defined as -dr/c dt) takes the form 

dy/dt'= Dd(1 +p')/cz2. 

If we realize that 

dz dR - @ + P I )  - dt' - l + p  - 
dt 1 -p" dt' c dt' 1 + p  (7) 

then it is clear that any number of higher-order derivatives of y can be calculated with 
respect to t'. This suggests that we use as our numerical method a Taylor series 
expansion of y around t' to as many terms as are needed to obtain the desired accuracy. 
We used terms through the fifth derivative in our calculations. 

The distance each charge is from the point midway between them can be calculated 
in similar fashion. Equations (7) and ( 5 )  can be used to find higher-order derivatives of 
z, which is then also expanded in a Taylor series to the desired accuracy around t'. Then 
from (4) the present position r is found. Higher-order derivatives of can be calculated 
either from equation ( 5 )  or by differentiating it. 

1.4. Considerations on numerical error 

The Taylor series method is a very accurate one. In fact, most other methods attempt to 
achieve the same accuracy as a Taylor algorithm of a given order (Conte and de Boor 
1965). We have used the method (Kasher 1976) in trajectory problems similar to the 
one presented here, and have obtained final values accurate to 0.00165%. (Of course, 
no such comparison can be made here, since the final values cannot be calculated 
analytically.) 

The error factor is beyond all twelve significant figures used for all the calculations 
of r, and for the calculations for p up t o p  = 0.90. From figure 2(a) one can see that the 
nature of the true velocity curve is clearly established by this value, and definitely 
separated from the Darwin and non-relativistic curve(s). The uncertainty for p is still in 
the twelfth figure past 0.95 for each new calculation, and barely reaches the eleventh 
figure at p = 0,99995. Since less than 5 X lo4 values of p (and position and accelera- 
tion) were obtained, we would expect that our calculations are quite accurate. 

A built-in damping factor for propagation of error comes from the fact that as the 
number of calculations becomes larger the At' used decreases. After the analytic 
solution At' was determined by subtracting successive values of t '= t -2. Clearly, z 
decreases as time goes on. This damping factor helps considerably when the charges get 
very close. The higher-order derivatives become quite large; but since they are 
multiplied in the Taylor series by higher powers of a very small At', they contribute very 
little to new calculations of p. This results in the very small error factor mentioned 
above. 

We also varied the time interval to compare a number of successively rougher and 
finer calculations, and found that the solutions were quite stable below a certain 
maximum At', and did not vary much as At' was made smaller and smaller. We chose 
our At' roughly one to two orders of magnitude below the maximum value, and did not 
use a finer one because the change in solutions was so slight. 
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2. The Darwin approximation 

An approximate Lagrangian for interacting particles, correct to the order of v 2 / c 2  
inclusive, is (Jackson 1963) 

L = -molc2(1 - z ~ ; / c ~ ) ~ / ~ + L ~ ~ ~  (Sa) 

with 

where q l ,  U ,  and q2,  u2 refer to the two particles, and rI2 = rl - r2 .  It is convenient to 
define the origin at the midpoint on the line joining the two charges. Since in our 
problem q1 = -q2 and u1 and u2 are antiparallel, the Lagrangian becomes 

4 2  L = -moc2( 1-3) -moc2( 1-5) +-(I r1+ r2 +?) 2 1/2 2 1/2 

which leads to the force equation 

(9) 

In (10) we have taken advantage of the fact that ii2 = irl,  and r l  = r2 = r .  In our 
calculations we used the Taylor series method with equation (10) and its derivatives. 

3. Results 

3.1. Usefulness of the Darwin approximation 

For perspective we include full-scale position, velocity, and acceleration curves in figure 
1 .  The values of the true relativistic, Darwin, and non-relativistic solutions are so close 
on this scale that the curves are indistinguishable. To separate them we expand our time 
scale and focus on the last three per cent of the graphs (figures 2(a)  and (6)). Now the 
true relativistic solution can be separated, but the Darwin and non-relativistic ones 
remain indistinguishable. In order to bring out more clearly the differences in the 
distance-time curves in figure 2(a )  we extended our graph only down to 0.001 units of 
distance from the collision point. At this position the charges have reached a speed of 
only 0 . 0 8 ~ ;  but the times for the two (three) curves are so close to the final collision 
times that the rest of each curve would be negligibly close to a straight line downward, 
and would provide no useful information. To see how each distance curve in figure 2(a )  
changes for smaller values of r we need only consult the velocity-time curves. 

The three graphs in figure 2 indicate that the Darwin approximation is little better 
than the non-relativistic solution. To show this more clearly it is perhaps better to 
display the positions, velocities, and accelerations in tabular form. In table 1 we see that 
the Darwin approximation in each case is much closer to the non-relativistic values than 
to the true ones, suggesting that if an approximation is to be used the non-relativistic 
solution would be nearly as good as (and certainly much simpler than) the Darwin 
approximation. 
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Figure 1. Full scale distance (A), velocity (B), and acceleration (C) against time. The true 
relativistic, Darwin, and non-relativistic curves are indistinguishable. (Distance is from the 
collision point, in terms of the initial separation.) 
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Figure 2. ( a )  Last 3% of the distance-time and velocity-time graphs. A, true curves; B, 
Darwin and non-relativistic curves. The Darwin and non-relativistic curves are indistin- 
guishable. (Distance again from the collision point, in terms of the initial separation.) 

( b )  Last 3% of acceleration-time graph. A and B are the same as in (a ) .  The Darwin 
and non-relativistic curves are again inseparable. 



1102 J C Kasher 

Table 1. Comparison of r,  P ,  and 6 for the three solutions. 

Non-relativistic 0.13175 
Darwin 0.13169 
True relativistic 0.13070 

5.77 
5.76 
5.60 

1.45 
1.43 
1.06 

7.68 x 1 0 - ~  

7.55 x 1 0 - ~  

1.78 x IO-’ 

Non-relativistic 6.79 x 1 0 - ~  

7.34 
5,86X 

7.22 

Darwin 6.46 

1.78 
1.06 

1.31 
3 . 8 7 ~  

1 . 1 5 ~  1 0 - ~  
4.8 x io-’ 

6,100X 
6,102 
6.130 

1.010x lo-’ 
1.011 
1.027 

2.110 
2.128 
2.473 

2.92 
2.99 
1.06x IO-’ 

2.94 X lo-’ 
3.01 
5.01 X lo-’ 

3.11x10-’ 
3.19 

6.11 
7.93 

7.11 
1.34X lo-’ 

7.63 X IO-* 
9.0 x1O-l 

1 . 9 1 7 ~  1 0 - ~  
1.919 
1,948 

9.99 
10.03 
10.62 

1.58 X lo-’ 
1.64 
2,94 

5.68 
6.16 
9.36 X 10’ 

5.87 x lo-* 
6.38 
4.95 x io3 

7.22 X 

8.01 

1.05 x 10’ 
3.08 

1.93 
29.13 

2.63 
1 . 0 4 ~  io5 

201.76 

211.54 

214.80 

215.083 

215.087 

2 15.122 

215.238 

215.2448 

2 15.2469 

Collision times 

Non-relativistic 215,257 

True relativistic 215,087 
Darwin 215.247 

3.2. Further comments on the true solution 

In figure 3 we see that the relativistic acceleration does peak and come back down a s p  
approaches one. Whether it approaches some finite limit as predicted as Huschilt et a1 
(1973) is not clear. Our calculations are valid up t o p  = 0,99995; but it appears that the 
slight oscillation of the acceleration around a limiting value would occur beyond this 
region, if it does occur. In any case, the limiting would be in the range of 1.06 X 10’ in 
natural units (c/d = 1 . 4 1 6 ~  10” s-’>. This is considerably larger than the 21’2 value 
obtained by Huschilt et al. 

We have restricted ourselves to slightly more than half of a midpoint-to-midpoint 
oscillation because if we apply our approach to a very small initial separation and p,, 
close to one the resulting analytic solution for the first part takes up far too much of the 
trajectory, and so the results would not correspond well to the real 1 = 0 orbit that we are 
considering. However, what we have calculated does give us an upper limit to the 
period of oscillation. When the charges approach one another, the retarded fields cause 
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Time 

Figure 3. Final 
p approaches one as an upper limit. 

of acceleration-time graph. The acceleration turns down sharply as 

them each to ‘see’ the other charge as being farther away than it actually is. When they 
are separating, however, they ‘see’ the other as being closer. Thus the effective force for 
the approaching charges is weaker than when they are separating; and it takes them a 
longer time to return from their largest separation than it does to travel out to it. So by 
quadrupling the return time we set an upper bound to the period of oscillation. For 
I = 0, n = 1 positronium the figure is 

T < 6.074476 X s 

We have run off values for parts of the paths of n = 2 and higher orbits (the computer 
time used makes full calculations like we did for n = 1 impractical), and the results 
strongly indicate that the following are the equations from which one can calculate the 
diameters and upper limits to the periods of the various orbits ( n  refers to the orbit): 

diameter= n2(2~11669511t0~0000141)10-8 cm 

period < n3(6.074476 x s). 

We also suspect that the tremendous increase in velocity at small distance that we 
found for the n = 1 orbit will occur for the higher orbits. In each case the graphs 
coincide exactly with the n = 1 results (except for the proper scale factor, of course) for 
as far as we carried out our calculations. Finally, our calculations suggest that the same 
type of results would follow for any 1 = 0 particle-antiparticle system, not just the 
electron-positron case. 
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